#9503
theanphibian
Participant

The reaction is not energetically favorable. Free neutrons decay into a proton and an electron with a half life of about 15 minutes. So it could hit, but what would it do? There is not enough energy in the system to turn it into a neutron.

This does occur with electron capture, but only in nuclei that are proton-rich. However, the mechanics for why the electron isn’t always interacting directly with the nucleus is quantum and more puzzling.

Why doesn’t the mater around us fall apart? If all we had were the 4 forces, matter would fall apart very quickly, but we have materials that hold together. That is due to the fact that the wave-nature of the electron prevents it from existing within the nucleus. The electron is very light (and probably the most fundamental type of particle in the universe) and because of this lightness, the wave nature of it exerts a very significant “outward pressure”, if you will.

Regarding hydrogen, it’s not hard to believe looking at a S orbital. The P orbitals are comparatively mind-blowing. P orbitals of electrons plow straight through the nucleus. Do not deceive yourself – this is physical. At any given moment, the electron has a definable probability of being within the nucleus, but the size of the nucleus as well as a few other factors make this somewhat improbable. It only matters when a reaction within the nucleus is energetically favorable, like in electron capture. In that case, the probability of the electron being in the nucleus is what drives the rate at which the reaction occurs.

For Hydrogen, the reaction is not permitted and never occurs, although the electron certainly spends some time within the structure of the proton itself. But it also spends some time on the other side of the universe too.